
UE22 FEBRUARY 2016 1

Image compression with multipixels
Alberto Isaac Barquı́n Murguı́a

Abstract—Digital images, depending on their quality, can take
huge amounts of storage space and the number of imaging devices
available just keeps increasing. Also, due to the limited transfer
rates and their cost, reducing the number of bits to represent
an image is an important issue. There are several compression
algorithms that take advantage of statistical redundancy or the
limited capabilities of the human eye, to encode the information
using fewer bits. One such algorithm consists in creating pixels
of different sizes for areas that have roughly the same color, thus
reducing the number of pixels [1]. An implementation of the
aforementioned algorithm is hereby presented, as well as de- and
en-coding algorithms for a proposed set of rules for storing such
images as to reduce their storage footprint.

I. INTRODUCTION

Compression of data is the use mathematical tools that
are capable of describing a given set of data by a set of
mathematical rules that is smaller than the set of data.
There are two kinds of compression: lossless and lossy.
As their names indicate, the former refers to a method
with which no data is lost in the process of compressing,
while the latter refers to a process that approximates the
original data well enough to say they are equivalent, although
strictly speaking, information is lost during the process and
cannot be recovered. Lossy compression is widely used for
sound and image compression because a compressed and an
uncompressed signal sensed by a human are virtually equal.
Lossless compression plays a more important role when
every bit of information has to be analysed or processed.
Compression algorithms have been used for a wide variety
of purposes, but mainly to reduce the storage space of files,
or to boost the data transfer rates. Because most of the time
these two factors, storage space and total data transfer can be
translated into costs, there is a direct and measurable benefit
provided by these algorithms.
There are several ways of compressing a set of data. One
way is by approximating a function with a series of simpler
terms such as trigonometric Fourier series, as is done with
the JPEG algorithm [2]. The image is treated as a function in
2 dimensions and then decomposed into a series of periodic
functions with different frequencies and amplitudes. This can
be done because every periodic function can be represented
as the infinite sum of cosines and sines [3]. Multilayer neural
networks can also be used for such a purpose, for they
provide a means of imitating an output given a specific input,
and there is a number of learning algorithms such as back
propagation which reduce the error between the desired and
the actual output [4].
What these methods do is eliminate redundancy in the data
set. One technique of doing so, without using approximation

Université Paul Sabatier Toulouse III

functions is called pattern substitution and consists of
identifying redundant patterns in the data and substitute them
by a reduced form or code [5].

II. METHOD

For 2 dimensional discrete signals like images, an example
of a pattern substitution method is grouping together a set of
adjacent pixels of roughly the same color, creating a multipixel
that spans several single pixels in both directions, horizontal
and vertical. To identify every multipixel in the image, they
are tagged with 7 properties instead of the 3 components in
colorspace a single pixel usually has. Those 7 properties are:
• Horizontal coordinate of the top-left corner
• Vertical coordinate of the top-left corner
• Width of the multipixel
• Height of the multipixel
• Red component of the multipixel’s color
• Green component of the multipixel’s color
• Blue component of the multipixel’s color

The proposed method creates candidate multipixels and cal-
culates what the average color for that multipixel is. Then its
variance is compared to a known threshold and if the variance
is higher than the threshold, the multipixel is discarded and
split into two new candidate multipixels that are analysed
recursively. The process begins with the entire image being
the first candidate multipixel, and runs until the multipixels
are too small to be divided any further. This smallest size can
be chosen as to reduce the total number of pixels. The variance
of a multipixel is calculated as follows:

V ar =
1

npix

∑
i

RGBi − µ (1)

Where µ is the mean RGB value in that multipixel.
The process of splitting the image alternates between horizon-
tal and vertical divisions. If the image is wider than it is tall,
the first division is vertical and the next division is horizontal.
The alternation is inverted if the image is taller than it is wide.
The sections need not be an even number of pixels long.
If the variance of the multipixel falls within the given thresh-
old, the candidate multipixel is no longer split and can be
stored.

A. Encoding and decoding
Before trying to encode a compressed image, it is necessary

to establish a set of rules. The file has a header that is 16
bytes long. After the header comes the list of pixels which are
a fixed number of bits long and after all the pixels a string of
two bytes indicates the end of the file. The file then will be



UE22 FEBRUARY 2016 2

NPixBPP +18 bytes long. The values NPix and BPP , as
well as the other 5 fields of information a multipixel needs are
described as follows:
Number of pixels (NPix), for which we reserve 4 bytes, or a
maximum pixel count of 4295 megapixels.
The number of bits per pixel (BPP), which is a variable value
because depending on the size of the image we can have small
images addressable with 8 bits, or really big ones that need
say 12 bits. This value is calculated with the minimum number
of bits that are needed to describe a pixel for a given image.
The maximum size of the pixel will be as big as the image
itself, so the minimum number of bits to describe a pixel’s size
is ceil(log2(W + 1)) + ceil(log2(H + 1)), where W and H
are the image’s width and height, respectively. Then we need
to express the pixel’s coordinates, which describe the position
of the upper-left corner of the multipixel. Since the multipixel
can be as small as one single pixel, the coordinates will have
the same range as the pixel’s size, which means it will need
the same number of bits, thus the total number of bits per pixel
will be:

2(ceil(log2(W + 1)) + ceil(log2(H + 1))) + 24 (2)

Then we have the size of the image in width and height,
and for each of which 16 bits are assigned, making for a
maximum image size of 65536 x 65536 pixels.
To add a little more information about what the file is, the
first 2 bytes of the header are set to an arbitrary value that
identifies the format, and they can be checked by the decoder
when first opening the file and avoid reading through the
entire file at once. Additionally an ending string can be set
for the header, indicating the start of the image.
Then we can start with the pixels’ information. Because
the pixels cannot be sorted according to their position as
normal pixels are, they are stored as they are generated during
the compression process, so both its horizontal (PosX) and
vertical (PosY) coordinates have to be specified. The next
two values have the same size because a single pixel can be
as big as the image, so the width (WPix) and height (HPix)
of each pixel are specified too. The last 24 bits from equation
(2) are for the 3-component vector in RGB colorspace with
one byte for each of its elements as is usually done on other
formats [2].
After all pixels have been written, it is convenient to have
an ending string in case the data has to be restored from an
unknown filesystem.
Thus, the proposed storing rules would look like this:
\0x20\0xB2IMG[Width][Height][BPP][NPix]
\0xBE\0x70[PosX][PosY][WPix][HPix][R][G][B]...
...[WPix][R][G][B]\0xBE\0x71

III. RESULTS

After running the algorithm against a set of 5 different
images, which can be seen in the Appendix A, the efficiency of
the algorithm was measured. The source images were already
compressed with the JPEG algorithm, so the size of an un-
compressed image was estimated using the size of the image,
supposing that every pixel occupies 3 bytes; so the file size

Fig. 1. Comparison of file sizes

would be 3WH bytes, where W is the width of the image and
H is its height. As one would expect, the multipixel algorithm
performs well when compressing images with very flat colors
and not too many details. Both algorithms performed worst
for the same image, and the multipixel algorithm performed
the best for an image with very flat colors. The second worst
image for the multipixel algorithm shows a very grainy region,
which requires many different small pixels. The file sizes of
the output images are shown in Fig. 1. Both algorithms show
a very high compression ratio for the tested images, as can
be seen in Fig. 2, averaging a 12.31 fold reduction in size for
JPEG, and 10.23 for the multipixel algorithm, with a maximum
of 25.6 fold and 19.1 and a minimum of 1.3 and 7.1 fold for
the multipixel algorithm and JPEG, respectively.
It is also important to measure the quality of the compressed
images, and not only the compression ratios, because an image
can be compressed with an extremely high ratio but a terrible
quality so the two images have no resemblance anymore. The
way of comparing the quality, is to measure the differences
between the two images and adding them all together along
the three channels and then normalizing it by dividing by the
total number of pixels times three. In order to have a sense
of scale, the compression quality between two completely
different images was measured and the result was an average
of 80 per pixel per channel, while a perfect image will have a
difference of 0 per pixel per channel. In Fig. 3 the quality of
every compressed image is shown, and the result is consistent
with the other two plots, where the image with the least quality
is also the image with the least compression ratio.

IV. CONCLUSION

The presented algorithm shows it can compress images at
a high ratio if given the correct circumstances, i.e. relatively
big areas with flat colors. Nevertheless, the resulting images
have a rough texture due to the nature of the algorithm. A
way to correct that, would be to blur the areas where the
biggest pixels are, as shown in Fig. 9 where the image was



UE22 FEBRUARY 2016 3

Fig. 2. Comparison of compression ratios

Fig. 3. Evaluation of quality

blurred selectively, making it have a high resemblance with the
original. Nonetheless, the quality of both images was compared
with the method described in the previous section, and the
quality of the blurred image is slightly lower compared to the
multipixel image, although does not seem to be statistically
significant.

V. FUTURE WORK

The format used to store the compressed images reserves
more bits than are commonly used for the size and coordinates
of the pixels because very few times there are multipixels as
big as the image. This results in 4 fields for every pixel that, for
small pixels, have several unused bits, that is to say they are set
to zero. This allows for further compression using statistical
methods.
Additionally, the image can be dynamically blurred to reduce
its roughness, but it would be very computationally intensive

to run a set of different kernels specific for each multipixel,
although the image would be aesthetically improved, if not
mathematically.

REFERENCES

[1] J. M. Colberg, “American pixels.” http://www.jmcolberg.com/
AmericanPixels.html. Accessed: 2016-02-25.

[2] MVnet, “Image compression.” http://www.mvnet.fi/index.php?osio=
Tutkielmat&luokka=Yliopisto&sivu=Image compression. Accessed:
2016-02-25.

[3] Wolfram, “Fourier series.” http://mathworld.wolfram.com/FourierSeries.
html. Accessed: 2016-02-25.

[4] D. R. G. H. R. Williams and G. Hinton, “Learning representations by
back-propagating errors,” Nature, vol. 323, pp. 533–536, 1986.

[5] J. Aronson, Data compression–a comparison of methods. No. 500-512,
US Dept. of Commerce, National Bureau of Standards: for sale by Supt.
of Docs., US Govt. Print. Off., 1977.



UE22 FEBRUARY 2016 4

APPENDIX A
TEST IMAGES

Fig. 4. Test Image 1. Top-left: Original, Top-right: Threshold=200, Bottom-left: Threshold=150, Bottom-right: Threshold=100



UE22 FEBRUARY 2016 5

Fig. 5. Test Image 2. Top-left: Original, Top-right: Threshold=400, Bottom-left: Threshold=200, Bottom-right: Threshold=100



UE22 FEBRUARY 2016 6

Fig. 6. Test Image 3. Top-left: Original, Top-right: Threshold=400, Bottom-left: Threshold=200, Bottom-right: Threshold=100



UE22 FEBRUARY 2016 7

Fig. 7. Test Image 4. Top-left: Original, Top-right: Threshold=400, Bottom-left: Threshold=200, Bottom-right: Threshold=100



UE22 FEBRUARY 2016 8

Fig. 8. Test Image 5. Top-left: Original, Top-right: Threshold=400, Bottom-left: Threshold=200, Bottom-right: Threshold=100

Fig. 9. Selective blurring. Left: Original. Right: Compressed and blurred


